ENVIRONMENTAL CHEMISTS

Client:

Analysis For Total Metals By EPA Method 200.8

Client ID:	M08357A Sm. Tank
Date Received:	02/17/12
Date Extracted:	02/21/22
Date Analyzed:	02/22/12
Matrix:	Aqueous
Units:	ug/L (nnh)

Project: % of Acid Lab ID: 202199-0 Data File: 202199-0 Instrument: ICPMS1

Alaskan Copper Works % of Acid M08357, F&BI 202199

202199-01 x10,000 202199-01 x10,000.035

Operator: AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	93	60	125
Indium	90	60	125
Holmium	95	60	125

	Concentration
Analyte:	ug/L (ppb)
Chromium	149,000
Nickel	129,000
Copper	<10,000
Zinc	<50,000
Arsenic	<10,000
Silver	<10,000
Cadmium	<10,000
Lead	<10,000
Iron Screen	<2,500,000

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix:	M08357B Lg. Tank 02/17/12 02/21/22 02/22/12 Aqueous	Client: Project: Lab ID: Data File: Instrument:	Alaskan Copper Works % of Acid M08357, F&BI 202199 202199-02 x10,000 202199-02 x10,000.036 ICPMS1
Units:	ug/L (ppb)	Operator:	AP

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	96	60	125
Indium	90	60	125
Holmium	92	60	125

	Concentration
Analyte:	ug/L (ppb)
Chromium	775,000
Nickel	669,000
Copper	53,000
Zinc	<50,000
Arsenic	<10,000
Silver	<10,000
Cadmium	<10,000
Lead	<10,000
Iron Screen	4,110,000

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Alaskan Copper Works
Date Received:	Not Applicable	Project:	% of Acid M08357, F&BI 202199
Date Extracted:	02/21/22	Lab ID:	I2-115 mb
Date Analyzed:	02/22/12	Data File:	I2-115 mb.008
Matrix:	Aqueous	Instrument:	ICPMS1
Units:	ug/L (ppb)	Operator:	AP
			1

	Lower	Upper
% Recovery:	Limit:	Limit:
98	60	125
96	60	125
99	60	125
	98 96	% Recovery: Limit: 98 60 96 60

	Concentration
Analyte:	ug/L (ppb)
Chromium	<1
Nickel	<1
Copper	<1
Zinc	<5
Arsenic	<1
Silver	<1
Cadmium	<1
Lead	<1
Iron Screen	<250

ENVIRONMENTAL CHEMISTS

Date of Report: 02/24/12 Date Received: 02/17/12

Project: % of Acid M08357, F&BI 202199

Date Extracted: 2/21/12 Date Analyzed: 2/21/12

RESULTS FROM THE ANALYSIS OF AQUEOUS SAMPLES FOR SPECIFIC GRAVITY @ $15.56\ ^{\circ}\mathrm{C}$

Sample ID Laboratory ID	Specific Gravity
M08357A Sm. Tank ²⁰²¹⁹⁹⁻⁰¹	1.09
M08357B Lg. Tank	1.11

Note: The third significant digit is an estimate

ENVIRONMENTAL CHEMISTS

Date of Report: 02/24/12 Date Received: 02/17/12

Project: % of Acid M08357, F&BI 202199

Date Extracted: NA
Date Analyzed: 02/21/12

RESULTS FROM THE ANALYSIS OF AQUEOUS SAMPLES FOR PERCENT ACID

Sample ID Laboratory ID	Percent Acid
M08357A Sm. Tank	7.0
M08357B Lg. Tank	7.4

ENVIRONMENTAL CHEMISTS

Date of Report: 02/24/12 Date Received: 02/17/12

Project: % of Acid M08357, F&BI 202199

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AQUEOUS SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 202197-04 (Matrix Spike)

				Percent	Percent		
	Reporting	\mathbf{Spike}	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	ug/L (ppb)	20	1.06	80	81	67-132	1
Nickel	ug/L (ppb)	20	14.5	77 b	80 b	73-119	4 b
Copper	ug/L (ppb)	20	1.09	77	77	50-144	0
Zinc	ug/L (ppb)	50	<5	78	79	46-148	1
Arsenic	ug/L (ppb)	10	<1	104	104	56-167	0
Silver	ug/L (ppb)	5	<1	91	92	66-121	1
Cadmium	ug/L (ppb)	5	<1	101	102	86-118	1
Lead	ug/L (ppb)	10	<1	98	101	76-125	3

Laboratory Code: Laboratory Control Sample

	Percent											
	Reporting	Spike	Recovery	Acceptance								
Analyte	Units	Level	LCS	Criteria								
Chromium	ug/L (ppb)	20	101	66-135								
Nickel	ug/L (ppb)	20	103	67-134								
Copper	ug/L (ppb)	20	103	66-134								
Zinc	ug/L (ppb)	50	103	57-135								
Arsenic	ug/L (ppb)	10	99	55-128								
Silver	ug/L (ppb)	5	101	64-136								
Cadmium	ug/L (ppb)	5	102	66-135								
Lead	ug/L (ppb)	10	104	67-135								

ENVIRONMENTAL CHEMISTS

Date of Report: 02/24/12 Date Received: 02/17/12

Project: % of Acid M08357, F&BI 202199

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AQUEOUS SAMPLES FOR SPECIFIC GRAVITY @ 15.56 °C

Laboratory Code: 202199-01 (Duplicate)

	Sample	Duplicate	Relative Percent	Acceptance
Analyte	Result	Result	Difference	Criteria
Specific Gravity	1.09	1.09	0	0-2

ENVIRONMENTAL CHEMISTS

Date of Report: 02/24/12 Date Received: 02/17/12

Project: % of Acid M08357, F&BI 202199

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF AQUEOUS SAMPLES FOR PERCENT ACID

Laboratory Code: 202199-01 (Duplicate)

			Relative			
Analyte	Sample Result	Duplicate Result	Percent Difference	Acceptance Criteria		
Percent Acid	7.0	6.9	1	0-20		

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb Analyte present in the blank and the sample.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht Analysis performed outside the method or client-specified holding time requirement.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- ${\bf J}$ The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- $\operatorname{pr}-\operatorname{The}$ sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- vo The value reported fell outside the control limits established for this analyte.
- x The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Free 200 (Bac) 9	W. (2000) 500-4040.	THE SHAPE VALUE OF FREE PERSON	Printer & Days, he				ć	Ca. Tank	245580W	•	Sm. Track	m 08357A	Sample ID			105h-206-24-1031 1 201-385-1309	S	Adding ACASKAN	Spiron Spiron
ļ	m lest	1		Ţ.,					02			0/				W 1 20		5. Havord	5
	auni		THE PARTY OF						2/2/12			2/4/2	Date			6-382-	WA 78/34	and si	1. Hon- CON
)		8					5:6			9:30				4309	34	-	
	Nhan	(rienus			3 33 M				HNO3			Hwo3	Saple Type	Ž	<i>y</i>	, ** -	REMARKS	of Acid	SAMPLY SECTION
	#	LI							/			/	ž			,		Acid	
	Phan	Horpson											TPH-Di TPH-Gas BYES by VOCs by	red riimo PELB					a
	720	300	8						X			X	NOO. by	do'L	ALC: LANGE		8 8	M08357	3
	SI	3	47.4						XX			X X	Spec. Qu Ag As	Cd		00	0		
	21/41/2	2/19/12	1						XX			XX	CR Cu NI Pb	FE	5		1_		
		12 10:550				-	٠			w •			X			and votions	TYROARS STARY	of the state of th	A CANODIS

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

February 24, 2012

Gerald Thompson, Project Manager Alaskan Copper Works 628 South Hanford Seattle, WA 98134

Dear Mr. Thompson:

Included are the results from the testing of material submitted on February 17, 2012 from the % of Acid M08357, F&BI 202199 project. There are 9 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures ACU0224R.DOC